A note on the mean ergodic theorem for nonlinear semigroups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the Mean Ergodic Theorem to Certain Semigroups

We study the asymptotic behaviour of solutions of the Cauchy problem u′ = (∑n j=1(Aj + A −1 j ) − 2nI ) u, u(0) = x as t → ∞, for invertible isometries A1, . . . , An.

متن کامل

Research Article Nonlinear Mean Ergodic Theorems for Semigroups inHilbert Spaces

Let K be a nonempty subset of a Hilbert space , where K is not necessarily closed and convex. A family Γ= {T(t); t ≥ 0} of mappings T(t) is called a semigroup on K if (S1) T(t) is a mapping from K into itself for t ≥ 0, (S2) T(0)x = x and T(t+ s)x = T(t)T(s)x for x ∈ K and t,s≥ 0, (S3) for each x ∈ K , T(·)x is strongly measurable and bounded on every bounded subinterval of [0,∞). Let Γ be a se...

متن کامل

On the Mean Ergodic Theorem for Subsequences

With these assumptions we have T defined for every integer n as a 1-1, onto, bimeasurable transformation. Henceforth we shall assume that every set considered is measurable, i.e. an element of a. We shall say that P is invariant if P(A) =P(TA) for every set A, P is ergodic if P is invariant and if P(U^L_oo TA) = 1 for every set A for which P(A) > 0 , and finally P is strongly mixing if P is inv...

متن کامل

Mean Ergodic Theorems for C0 Semigroups of Continuous Linear Operators

In this paper we obtained mean ergodic theorems for semigroups of bounded linear or continuous affine linear operators on a Banach space under non-power bounded conditions. We then apply them to the wave equation and the system of elasticity to show that the mean of their solutions converges to their equilibriums.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1983

ISSN: 0022-247X

DOI: 10.1016/0022-247x(83)90168-3